Energy norm a posteriori error estimates for mixed finite element methods
نویسندگان
چکیده
منابع مشابه
Energy norm a posteriori error estimates for mixed finite element methods
This paper deals with the a posteriori error analysis of mixed finite element methods for second order elliptic equations. It is shown that a reliable and efficient error estimator can be constructed using a postprocessed solution of the method. The analysis is performed in two different ways: under a saturation assumption and using a Helmholtz decomposition for vector fields.
متن کاملFunctional-Type A Posteriori Error Estimates for Mixed Finite Element Methods
The work concerns the a posteriori error estimation for the primal and the dual mixed finite element methods applied to the diffusion problem. The problem is considered in a general setting, with inhomogeneous mixed Dirichlet/Neumann boundary conditions. The new, functional-type a posteriori error estimators are proposed that exhibit the ability both to indicate the local error distribution and...
متن کاملResidual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods
We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...
متن کاملA Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Parabolic Problems Coupled through a Boundary
We examine two discretization schemes for solving a pair of parabolic problems with significantly different spatial and temporal scales that are coupled through a common interface: a mixed finite element method which uses a rigorous mortar element technique in both space and time for coupling and a finite volume method which employs popular ad hoc projections for coupling. We derive a posterior...
متن کاملLocalized pointwise error estimates for mixed finite element methods
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2006
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-06-01872-2